SENSORS FOR FOOD AND LIFESCIENCES.

30022 / 1.6 / 2025-04-29 / RF / EU

Einbau- und Betriebsanleitung Relatives Trübungsmessgerät ITM-51/ITM-51R

Hinweis

Der Inhalt dieses Dokuments ist das geistige Eigentum von Anderson-Negele. Jede Vervielfältigung oder Übersetzung dieses Dokuments ohne die schriftliche Genehmigung ist verboten.

Bitte lesen Sie diese Montage- und Betriebsanleitung genau durch. Alle Anweisungen in dieser Anleitung müssen genau befolgt werden, um den ordnungsgemäßen Betrieb des Geräts zu gewährleisten. Wenn Sie zum Produkt, dem Einbau oder der Inbetriebnahme Fragen haben, kontaktieren Sie den Anderson-Negele Support unter

Tel. +49-8333-9204720 oder per E-Mail an: support@anderson-negele.com

NEGELE MESSTECHNIK GMBH Raiffeisenweg 7 87743 Egg an der Guenz Phone +49 (0) 83 33 . 92 04 - 0 Fax +49 (0) 83 33 . 92 04 - 49 sales@anderson-negele.com Tech. Support: support@anderson-negele.com Phone +49 (0) 83 33 . 92 04 - 720

Inhaltsverzeichnis

1	Einsatzbereich / Verwendungszweck	3
2	Normenkonformität	3
3	Sicherheitshinweise	3
4	Besondere Merkmale / Vorteile	4
5	Optionen / Zubehör	4
6	Installation und Anschluss	4
6.1	Mechanischer Einbau	4
6.2	Anforderungen für hygienischer Einbau	5
6.3	Konfiguration	6
6.4	Einstellungen mit Hilfe des MPI-200 Programmieradapters	8
6.5	Einstellungen mit Hilfe des Simple / Large User Interface	12
6.5.1	Anzeige im Display	12
6.5.2	Konfiguration der LEDs	13
6.6	Beispiele für Einstellung des Sensors	13
6.6.1	Menüstruktur beim Display	14
6.6.2 6.6.3	Einstellung kundenspezifische Trübungs- / %-Solidskurve über PC- Software	15 16
7	Einbau des "Large User Interface" (LUI)	17
7.1	Nachrüstung, wenn zuvor kein Display verbaut war	17
7.2	Nachrüstung bei vorhandenem kleinem Display (SUI)	18
7.3	Bedienung des großen Displays	18
8	Abmessungen	19
9	Anschlussplan Kabelverschraubung	21
10	Elektrischer Anschluss der digitalen Signalmodule	21
11	ITM-51 IO-Link Geräte Identifikation	24
12	ITM-51 IO-Link Prozessdaten	24
12.1	ITM-51 IO-Link Beschreibung Prozessdaten	25
12.2	IO-Link Eventliste	26
13	Wartung und Reparatur	28
14	Technische Daten	29

1 Einsatzbereich / Verwendungszweck

- Relative Trübungsmessung von Medien mittlerer bis hoher Trübung (200...300.000 NTU äquivalent)
- Einsatzbereich in hygienischen Anwendungen der Lebensmittel-, Getränke- und Pharmaindustrie
- Geeignet für CIP/SIP Reinigung mit 140°C/für max. 120 Minuten
- Nicht geeignet für den Einsatz in explosionsgefährdeten Bereichen
- Nicht geeignet für den Einsatz in sicherheitsrelevanten Anlagenteilen (SIL)

2 Normenkonformität

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden erfüllt durch:

- 2014/30/EU Elektromagnetische Verträglichkeit
- 1935/2004/EU Bedarfsgegenständeverordnung (BedGgstV)
- EN 61000-6-2:2005 (Störfestigkeit)
- EN 61000-6-4:2007 + A1:2011 (Störaussendung)

3 Sicherheitshinweise

Diese Sicherheitshinweise müssen unbedingt beachtet werden, um

- die Sicherheit von Personen und Umwelt nicht zu gefährden.
- Schäden an dem Sensor zu vermeiden.
- Fehlchargen bei der Herstellung des Produkts zu verhindern.

Die elektrischen Anschlussarbeiten dürfen nur solche Personen ausführen, die die notwendige Sachkunde (z.B. Elektrofachkräfte oder elektrotechnisch unterwiesene Personen) und die notwendige Beauftragung vom Betreiber besitzen.

Die elektrische Verdrahtung der Spannungszuführung und der Ein- und Ausgänge der Steuerkreise muss fachgerecht durchgeführt werden. Hierbei ist der aktuelle Stand der Technik maßgebend.

Insbesondere müssen folgende Hinweise beachtet werden:

- Sicherheitshinweise
- Elektrische Anschlussdaten
- 1. Alle Personen, die mit der Aufstellung, Inbetriebnahme, Bedienung, Wartung und Instandhaltung des Sensors zu tun haben, müssen entsprechend qualifiziert sein.
- 2. Diese Bedienungsanleitung muss genau beachtet werden. Der Betreiber muss sicherstellen, dass das Personal die Betriebsanleitung liest und voll verstanden hat.
- 3. Alle Arbeiten haben mit größter Sorgfalt zu erfolgen und dürfen nur von hierzu autorisiertem und ausgebildetem Personal durchgeführt werden. Die jeweiligen Landesvorschriften bezüglich Öffnen und Reparieren der Geräte müssen beachtet werden.
- 4. Wir empfehlen, die Betriebsanleitung gut zugänglich bei dem Messgerät aufzubewahren.
- 5. Vor Umbau- und Wartungsarbeiten ist der Sensor spannungsfrei zu schalten.
- 6. Der Arbeitsbereich des Bedieners muss genügend Freiraum bieten, um die Verletzungsgefahr zu minimieren.
- 7. Die technischen Daten gemäß Betriebsanweisung und Typenschild sind zu beachten.

Es erlöschen jegliche Gewährleistungsansprüche bei Schäden, die auf unsachgemäße Ausführung von Arbeiten am Gerät zurückzuführen sind.

4 Besondere Merkmale / Vorteile

- Aufbau des Sensors auf Basis einer modularen Geräteplattform maßgeschneiderte Konfiguration und einfacher Austausch im Falle eines Defekts
- Frontbündiges Design für leichte Reinigbarkeit
- Optik aus hoch widerstandfähigem Saphir
- Kein Einfluss durch Reflektionen bei kleinen Nennweiten oder elektropolierten Oberflächen
- Farbunabhängige Messung bei 860 nm Wellenlänge
- Hygienisches Design mittels Negele Einschweißmuffe
- Individuelle Einstellung/Programmierung über PC oder User Interface möglich
- 2 individuell konfigurierbare LEDs auf der Displayeinheit

5 Optionen / Zubehör

- User Interface mit kleinem Display oder großem Display (nachrüstbar)
- Programmieradapter MPI-200 (PC basierend)
- Werkzeug zum Lösen des Signalmoduls
- Vorkonfektionierte PVC Kabel

6 Installation und Anschluss

6.1 Mechanischer Einbau

Mechanischer Anschluss / Einbauhinweise

• Stellen Sie sicher, dass die Rohrleitung in die der Sensor montiert ist immer vollgefüllt ist. Luft oder Luftblasen erzeugen Trübung und verfälschen somit die Messung. Der Einbau in eine steigende Leitung ist daher zu bevorzugen.

Flussrichtung des Mediums

6.2 Anforderungen für hygienischer Einbau

Bedingungen für hygienischen Einbau nach 3A und EHEDG

- Die Sensoren ITM-51 / ITM-51R sind für CIP/SIP Reinigung geeignet. Der Sensor ist für eine maximale Temperatur von 140°C/120min ausgelegt.
- Auf eine selbstentleerende Einbaulage ist zu achten.
- Bei Verwendung von Tri-Clamp Prozessanschlüssen sind die Anforderungen der aktuellen 3A oder EHEDG Vorschriften bezüglich Einbaulage, Prozessanschlüsse und zugelassener Dichtungen zu achten.

Tri-Clamp: T < D</td> Tri-Clamp: T < D</td> Tri-Clamp: T < D</td>

Einzuhaltende Maße für hygienischen Einbau bei Tri-Clamp

Empfohlene Einbaulagen

6.3 Konfiguration

Grundsätzlich ist das relative Trübungsmessgerät ITM-51/ITM-51R so eingestellt, dass es ohne spezielle Anpassung betrieben werden kann. In Ausnahmefällen kann es jedoch vorkommen, dass eine zusätzliche Veränderung einiger Parameter vorgenommen werden muss. Eine Liste der im Trübungsmessgerät eingestellten Parameter wird bei der Auslieferung des Sensors beigelegt.

Standardmäßig sind folgende Werte bei Auslieferung im Sensor mit Schaltausgang eingestellt: Analogausgang 1 (X45 auf Klemmen 4 und 5): Trübung 1 mit Messbereich 0...100 %TU Relaisausgang (X67 auf Klemmen 6 und 7): Schaltausgang mit Schaltpunkt 10 %TU

Mittels einer externen Steuerspannung (24 V DC) kann am Digitaleingang X3 zwischen Messbereich 1 und 2 gewechselt werden. Der Digitaleingang X3 ist kurzschlussfest.

In der dem Sensor beigelegten Parameterliste ist die Einstellung des Sensors für den Analogausgang 1 (Klemmen 4 und 5) unter **X45a**, für den Relais Ausgang (Klemmen 6 und 7) unter **X67** zu finden.

Eine Parametrierung kann entweder über den PC basierten MPI-200 Programmieradapter, IO-Link oder das User-Interface direkt am Sensor vorgenommen werden. Das Trübungsmessgerät ITM-51 ist nach dem modularen System in einer **"Baumstruktur"** aufgebaut, was eine maßgeschneiderte Konfiguration und auch einen einfacheren Austausch im Falle eines Ausfalls ermöglicht.

Ebenfalls in dieser Baumstruktur aufgebaut ist die Software des Programmieradapters MPI-200 für den PC sowie das User Interface im Sensor. Es findet auch dort jeweils eine Unterteilung in **Display**, **Elektronik (Signalinterface)** und **Sensorik (Trübungsmessung)** statt.

Beim Einstellen der Parameter ist zu beachten, dass hierfür verschiedene Freigabeebenen vorgesehen sind (**0 Beobachtung, 1 Justierung (QuickSetup), 2 Einrichtung, 3 Kalibrierung**):

Sensorik (Trübungsmessung): Der analoge Ausgang des Sensors für Trübung ist frei konfigurierbar.

Trübung: Hier können zwei unterschiedliche Trübungsmessbereiche unabhängig voneinander eingestellt werden. Der Messbereichsendwert ist frei wählbar. Das Umschalten zwischen den beiden Messbereichen kann mit einem Signalmodul 153 über den digitalen Schalteingang X3 vorgenommen werden. Diese Funktion ist mit den Signalmodulen 142 und 152 nicht verfügbar.

Schaltausgang (nur verfügbar bei 152 und 153 Signalmodul): Sowohl der Schaltpunkt (Trübungswert) wie auch die Wirkrichtung des Schaltausganges kann frei eingestellt werden.

Elektronik (Signalinterface):

- <u>Signalauswahl für das 4...20 mA-Signal:</u> Auswahlmöglichkeit zwischen Trübung 1 und 2 sowie der Trübungseinheit
- Sollwert für 4 bzw. 20 mA-Signal: Standardmäßig ist hier für das 4 mA-Signal der Messbereichsbeginn, für das 20 mA-Signal das Messbereichsende eingesetzt. Dies kann aber bei Bedarf beliebig angepasst werden.
- <u>Warn-Signal "kein Medium"</u>: Strom-Schleifen-Signal, wenn der Sensor nicht in ein Medium getaucht ist → Trockenlauf.
- <u>Warn-Signal "außer Spezifikation":</u> Strom-Schleifen-Signal im Fall eines Betriebszustandes außerhalb der Spezifikation. Hier kann die Messwertgenauigkeit nicht mehr garantiert werden.
- <u>Fehler-Signal "Gerätefehler":</u> Ausgabe des Strom-Schleifen-Signals im Fehlerfall, wenn beispielsweise das Gerät ausfällt.
- Signal-Begrenzung Unter-/ Übersteuerung: Untere bzw. obere Grenze des noch möglichen und gültigen linear ausgebbaren Strom-Schleifen-Signals unterhalb von 4 mA bzw. oberhalb von 20 mA
- <u>Fehler-Signal "Unter-/ Überlauf"</u>: Strom-Schleifen-Signal ist unter bzw. über der Unter- bzw. Übersteuerungsgrenze.
- <u>Signal Simulation</u>: Simuliert das Strom-Schleifen-Signal, wobei der Quellen-Wert kurzzeitig durch den eingegebenen Parameterwert ersetzt wird.
- Konfiguration der LEDs: Die 2 LEDs lassen sich beliebig konfigurieren, was in Kapitel 6.3 näher erläutert wird.

Diese bzw. auch die durch den Anwender selbst veränderten Parameterwerte können bei Bedarf mit Hilfe des MPI-200 Programmieradapters über die Software ausgedruckt werden, über **Datei** → **Parameter-Daten** → **Drucken** oder aber als Datei auf den PC exportiert werden (über **Datei** → **Parameter-Daten** → **Export Daten-Datei** (*.xml)).

Beachten Sie bei der Einstellung auch die für jeden Parameter in der MPI-Software angezeigten Hilfstexte. Diese beinhalten weitere nützliche Informationen zur Veränderung des angewählten Parameters.

6.4 Einstellungen mit Hilfe des MPI-200 Programmieradapters

Der MPI-200 Programmieradapter wird über das externe MPI-200-F Adapterstück an das ITM-51 / ITM-51R angeschlossen. Es ist darauf zu achten, dass das ITM-51 während der Parametereinstellung immer an die Versorgungsspannung angeschlossen sein muss.

Anschlussstecker für MPI-200-F Adapter als Zwischenstecker zwischen ITM-51 Elektronik und MPI-200 Anschluss 3 (siehe nächstes Bild)

Nach Anschluss des Sensors am PC und Öffnen der Benutzersoftware zeigt sich folgendes Fenster:

- 1.: Angaben zum aktuellen Prozesswert
- 2.: Schaltflächen zur Änderung der Parametereinstellung
- 3.: Angaben zum aktuellen Quellen-Wert
- 4.: Veränderbare PC-Parameter
- 5.: Veränderbare Sensorparameter

Durch einen Klick auf + im Menü öffnet sich jeweils ein Untermenü, in welchem Parameter verändert werden können.

Hinweis:

Für die weitere Einstellung beachten Sie bitte auch die Beschreibung in der Produktinformation für den Programmieradapter **MPI-200**.

Um Parameter direkt im Sensor einzustellen bzw. zu verstellen (siehe Kapitel 6.2 "**Einstellungen mit Hilfe des Simple User Interface"**), benötigen Sie ID-Codes, die aus der unten aufgeführten Tabelle zu entnehmen sind. In dieser Tabelle sind nur die wichtigsten ID-Codes aufgelistet. Weitere ID-Codes finden Sie über die Benutzersoftware. Dort ist es erforderlich, beim jeweiligen Parameternamen mit der rechten Maustaste auf "Info" zu klicken. Es erscheint dann ein Info-Kasten mit der jeweiligen ID (siehe Grafik unten):

Da jeweils eine 6-stellige Suchnummer erforderlich ist, muss der angezeigten 5-stelligen ID (in der Grafik oben 30034) immer an erster Stelle eine weitere Ziffer angefügt werden. Je nach Knoten ist dies:

- 4 für Änderungen im **Display**
- 3 für Änderungen in der Elektronik (Signalinterface)
- 0 für Änderungen bei der Sensorik (Trübungs-Messung)

Ebenfalls möglich ist der Ausdruck einer Liste mit allen ID-Codes über die Benutzeroberfläche am Computer. Hierzu wird über **Datei** \rightarrow **Parameter-Daten** \rightarrow **Drucken** ein Fenster geöffnet, über das eine komplette Liste der ID-Codes ausgedruckt werden kann.

Liste der wichtigsten ID-Codes:

Parameter/Parametername	Access/Setup Mode	Suchnummer (ID Nummer)	Value Name		
Sensor					
Einheit der Trübung 1	Setup	014021	Turbidity1		
Dämpfung 1	Setup	014027	Turbidity1		
Messbereich Tr1	Setup	014029	Turbidity1		
Einheit der Trübung 2	Setup	014022	Turbidity2		
Dämpfung 2	Setup	014028	Turbidity2		
Messbereich Tr2	Setup	014030	Turbidity2		

X-Punkt 01 (kNTU)	Setup	013151	Tu.%Solids
Y-Punkt 01 (%solids)	Setup	013171	Tu.%Solids
bis	Setup	bis	Tu.%Solids
X-Punkt 08 (kNTU)	Setup	013158	Tu.%Solids
Y-Punkt 08 (%solids)	Setup	013178	Tu.%Solids
X45a Strom-Schleifen-Sig			
Signal-Auswahl	Setup	330031	X45a I-Out
Unter-Steuerungs-Grenze	Setup	330141	X45a I-Out
Über-Steuerungs-Grenze	Setup	330211	X45a I-Out
Warn-S: kein Medium	Setup	330121	X45a I-Out
Warn-S: außer Spezif.	Setup	330221	X45a I-Out
Fehler-S: Wert-Unterlauf	Setup	330151	X45a l-Out
Fehler-S: Wert-Überlauf	Setup	330161	X45a l-Out
Fehler-S: Gerätefehler	Setup	330131	X45a I-Out
Signal-Simulation	Setup	330201	X45a I-Out
Digitaleingang			
Wirkungsrichtung	Setup	330821	Digital-In
Simulation Eingang	Setup	330831	Digital-In
X45b Strom-Schleifen-Sig			
Signal-Auswahl	Setup	330032	X45b l-Out
Unter-Steuerungs-Grenze	Setup	330142	X45b l-Out
Über-Steuerungs-Grenze	Setup	330212	X45b l-Out
Warn-S: kein Medium	Setup	330122	X45b l-Out
Warn-S: außer Spezif.	Setup	330222	X45b l-Out
Fehler-S: Wert-Unterlauf	Setup	330152	X45b I-Out
Fehler-S: Wert-Überlauf	Setup	330162	X45b I-Out

Fehler-S: Gerätefehler	Setup	330132	X45b l-Out
Signal-Simulation	Setup	330202	X45b l-Out
X67 Digitalausgang			
Signalauswahl	Setup	330037	X67 D-Out
Ausgangsfunktion	Setup	331114	X67 D-Out
Wirkungsrichtung	Setup	331124	X67 D-Out
Eingabeart Schaltpunkt	Setup	331114	X67 D-Out
Schaltpunkt	Setup	331144	X67 D-Out
Hysterese	Setup	331254	X67 D-Out
Einschaltverzögerung	Setup	331174	X67 D-Out
Ausschaltverzögerung	Setup	331114	X67 D-Out
Warn-S: kein Medium	Setup	331194	X67 D-Out
Warn-S: außer Spezif.	Setup	331204	X67 D-Out
Fehler-S: Wert-Unterlauf	Setup	331214	X67 D-Out
Fehler-S: Wert-Überlauf	Setup	331224	X67 D-Out
Fehler-S: Gerätefehler	Setup	331234	X67 D-Out
Signal-Simulation	Setup	331244	X67 D-Out
Display			
Sprache	Setup	451010	Set Display
Kontrast	Setup	451020	Set Display
Bildschirmschoner Zeit	Setup	451050	Set Display
Passwort	Setup	450103	Set Display

6.5 Einstellungen mit Hilfe des Simple / Large User Interface

Der Softwareaufbau des Simple User Interfaces ist ähnlich der PC Version. Die Bedienung erfolgt mit Hilfe zweier Bedientasten, welche sich links und rechts neben dem Display (beim Simple User Interface) bzw. unterhalb des Displays (beim Large User Interface) befinden. Mit diesen 2 Tasten lässt es sich durch die Baumstruktur des Simple User Interface navigieren, um Parameter zu verändern. Die Funktion ist wie folgt:

Taste	kurz betätigt	lang betätigt (la.)
R	Weiterspringen zum nächsten Knoten, Parameter	Editieren eines Knoten, Parameter
L	Zurückspringen zum vorherigen Knoten, Parameter	Verlassen des Editiermodus ohne Speichern, zurück zum nächsthöheren Level
R/L	auf- oder abscrollen	
R und L		Beide Tasten für 10 Sekunden betätigen, zurückspringen zum
gleichzeitig		Anfang des Menüs (Achtung, dies ist kein Reset)

R Rechts L Links

Hinweise zur Einstellung mit Hilfe einer ID Nummer

- 1) Rechte Taste lang betätigen, Anzeige springt ins Menü.
- 2) Rechte Taste 2x kurz bestätigen zur Position "ID Suche"
- 3) Rechte Taste lang betätigen und gewünschten Punkt "ID Search" auswählen
- 4) Rechte Taste lang betätigen, dann ID Nummer von rechts nach links eingeben. Hierbei wird wie folgt vorgegangen:
 - a.) Gewünschte Position aussuchen (Navigation mit rechts/links linke Taste betätigen: Position nach links ändern, rechte Taste betätigen, Position nach rechts ändern)
 - b.) An gewünschter Stelle die rechte Taste lang drücken, bis das Feld grau hinterlegt ist, dann mit rechts/links den Zahlenwert eingeben und mit rechter Taste lang bestätigen, bis die Hinterlegung der Zahl erlischt. Dann nächste Ziffer eingeben.
 - c.) Wenn alle Ziffern eingegeben sind, mit linker oder rechter Taste so weit nach links tippen, bis alle Ziffern grau hinterlegt sind.

Als nächstes rechte Taste lange gedrückt halten. Das System springt dann zu dem ausgewählten Parameter und dieser kann nun in selbiger Art eingegeben / verändert werden. Start hierzu ist wieder das lange Betätigen der rechten Taste.

Bei einigen systemrelevanten Parametern erfolgt dann noch eine Sicherheitsabfrage ob die Änderung gespeichert werden soll, oder nicht.

- 5) Die Eingabe kann durch langes Drücken der linken Taste abgebrochen werden. Das Setup kann durch mehrmaliges langes Drücken der linken Taste verlassen werden.
 - Betätigen der rechten Taste bedeutet Parameter wird verändert bzw. gesichert.
 - Betätigen der linken Taste steht hierbei für Verlassen der Einstellung ohne Änderung.

6.5.1 Anzeige im Display

Nach Anpassung / Veränderung der Parameter im Sensor oder auch wenn der Sensor eingeschaltet wird und keine Veränderung erfolgt, befindet er sich im Anzeigemodus Wenn ein zweiter Ausgabewert (nur für Signalmodul A52 und A53) vorhanden ist wird dieser in der untersten Zeile angezeigt:

Um den Anzeigemodus zu verlassen, um Einstellungen am Sensor vorzunehmen, ist der rechte Knopf lange zu drücken. Der Sensor befindet sich dann auf der Startseite, von der aus die Einstellung erfolgen kann.

6.5.2 Konfiguration der LEDs

Auf der Displayeinheit befinden sich 2 LEDs, die individuell konfiguriert werden können. Auf diese Weise können Fehler auch optisch direkt vor Ort aufgezeigt werden.

Folgende Optionen können bei der Einstellung der LEDs ausgewählt werden:

- <u>Signal-Auswahl:</u> Auswahl zwischen den Signalen Trübung 1 und 2
- <u>Einschaltverzögerung</u>, Ausschaltverzögerung:

Der Digitalausgang wird um die eingestellte Zeit verzögert ein- bzw. ausgeschaltet. Hier können Werte zwischen 0...30 sec. eingestellt werden.

<u>Warn-S: kein Medium, Warn-S: außer Spezifikation, Fehler-S: Wert-Unterlauf, Fehler-S:</u>
 <u>Wert-Überlauf, Fehler-S: Gerätefehler:</u>

Es kann individuell eingestellt werden, ob die jeweiligen Punkte eine Auswirkung auf die Anzeige der LEDs haben. Ausgewählt werden kann hier zwischen "keine Wirkung auf Ausgang", "Ausgang schnell blinkend" (Takt 0,4 sec.), "Ausgang langsam blinkend" (Takt 1 sec.), "Ausgang EIN" (LED dauerhaft an) sowie "Ausgang AUS". Als Ausgang wird hierbei die LED bezeichnet.

• Signal-Simulation:

Quellen-Wert wird kurzzeitig ersetzt durch den eingegebenen Parameterwert. Es können folgende Situationen simuliert werden: "Ausgang AUS", "Ausgang EIN", "Ausgang langsam blinkend" sowie "Ausgang schnell blinkend". Als Ausgang wird hierbei die LED bezeichnet.

Bei Auslieferung des Trübungsensors sind folgende Werte für die LEDs voreingestellt:

• LED1 (linke LED)

Fehler –S: Wert Überlauf: LED blinkt im Sekundentakt, wenn der Sensor eine Bereichsübersteuerung meldet. Befindet sich der Sensor im Normalzustand, ist diese LED aus.

 LED2 (rechte LED)
 Schaltzustand Schaltausgang: LED leuchtet im dauerhaft, sobald der Schaltpunkt f
ür den Schaltausgang erreicht ist und dieser geschalten wird. Die Wirkrichtung des Schaltausganges und dementsprechend das Verhalten der LED2 kann eingestellt werden.

6.6 Beispiele für Einstellung des Sensors

Nachfolgend werden noch Beispiele aufgeführt, welche über das Simple User-Interface bzw. über die Benutzeroberfläche am PC erfolgen kann.

6.6.1 Menüstruktur beim Display

6.6.2 Beispiel für Einstellung Messbereich Trübung 1 ohne ID-Code

Alternativ zu der Eingabe des Messbereichs, wie oben aufgeführt, kann der Messbereich auch über die Eingabe eines ID-Codes angepasst werden. Es ist dann erforderlich auf der Seite ID-Suche auf **"JA"** zu gehen, danach kann der ID-Code mit den Tasten eingegeben werden. Nach Bestätigung des Codes springt der Sensor dann in das Menü, in welchem der Parameter eingestellt werden kann.

6.6.3 Einstellung kundenspezifische Trübungs- / %-Solidskurve über PC-Software

Nach dem Öffnen der PC Software kann über den Knoten Trübungs-Messung \rightarrow Trübung %Solids \rightarrow (+) bei Bedarf eine kundenspezifische Kurve eingegeben werden. Hierzu ist es erforderlich, dass für mindestens 2 X- und Y-Punkte Werte eingegeben werden. Bis zu 8 Stützpunkte für X- und zugehörige Y-Werte können eingegeben werden, um den Zusammenhang zwischen Trübung (X) und %Solids (Y) festzulegen. Die Y-Werte bilden mit den zugehörigen X-Werten jeweils Koordinaten, die als Stützpunkte für die Linearisierungskurve dienen. Wird für einen der Punkte 0 eigegeben, so wird dieser Stützpunkt deaktiviert.

X-Punkt 01...X-Punkt 08 (Trübung): Diese Parameter werden genutzt, um den kundenspezifischen Messbereich der Trübung zu definieren. Hier sind Werte von 0...300 kNTU möglich.

Y-Punkt 01...Y-Punkt 08 (%solids): Diese Parameter werden genutzt, um den kundenspezifischen Messbereich zu definieren. Eingestellt werden können hier Werte zwischen 0...100 %.

7 Einbau des "Large User Interface" (LUI)

- 1. Ausbau der Plastikabdeckung (weiter bei 4.) bzw. des Pucks mit aufgestecktem kleinem Display (weiter bei 2.)
- 2. Entfernung kleines Displays
- 3. Einbau des Pucks in Sensorkopf
- 4. Aufstecken des großen Displays

Hot-Plug-Funktion: Ein Einbau des großen Displays ist unter Spannung möglich, erfordert jedoch Vorsichtsmaßnahmen, die im Umgang mit elektronischen Bauteilen beachtet werden müssen.

Falls das Display unter Spannung eingebaut wird, ist es erforderlich, nach dem Einbau beide Tasten gleichzeitig für > 10 sec. zu drücken, das Display wird dadurch aktiviert.

7.1 Nachrüstung, wenn zuvor kein Display verbaut war

Plastikabdeckung entfernen: Dazu Haltenasen mit einem Schraubenzieher leicht nach innen biegen, die Abdeckung lässt sich dann leicht entfernen.

Nach dem Ausbau der Plastikabdeckung kann das große Display in den Kopf des Sensors eingesetzt werden. Hierzu müssen die Nasen (Abb. 2) in die dafür vorgesehenen Öffnungen auf dem Puck (Abb. 1) eingefädelt werden. Danach kann das Display problemlos auf den Puck gedrückt werden. Eine Verkabelung ist nicht erforderlich.

Zu beachten: Nach Einbau des LUI kann der Sensor nur noch über dieses Display bedient werden, da der Anschlussstecker für den MPI-200-Adapter durch das Display abgedeckt wird. Falls eine Bedienung über die Programmiersoftware erwünscht ist, ist es erforderlich, das Display zu entfernen. Danach kann der Anschlussstecker des Programmieradapters einfach aufgesteckt werden.

Achtung: Der Anschlussstecker des Programmieradapters (Abb. 3) ist richtig herum aufzustecken → der grüne Abstandshalter ist in Richtung Kabelausführung (M12-Stecker oder PG) auszurichten.

7.2 Nachrüstung bei vorhandenem kleinem Display (SUI)

Zunächst muss der Puck mit dem aufgesteckten Display entfernt werden, was mit Hilfe des Puck-Ausziehwerkzeugs (Abb. 1) geschieht. Hierzu müssen zunächst die Litzen aus der Kabelleiste gelöst, dann die 5 Arme des Puck-Ausziehwerkzeugs in die Plastiknasen des Pucks eingefädelt werden (Abb. 2).

Abb. 5

Danach ist es erforderlich, das Ausziehwerkzeug bis zum Anschlag in den Kopf des Sensors und die runde Scheibe so weit wie möglich in Richtung des Sensor-Kopfes zu schieben, damit die Arme des Werkzeugs den Puck fest greifen.

Der Puck kann samt Display aus dem Gehäuse des Sensors herausgezogen werden, danach wird das kleine Display einfach vom Puck abgezogen.

Abschließend wird der Puck ohne Display wieder ausgerichtet und in den Sensorkopf eingebaut sowie die Verkabelung mit der Kabelleiste wiederhergestellt, dann kann das große Display aufgesteckt werden \rightarrow siehe "Nachrüstung, wenn zuvor kein Display verbaut war".

7.3 Bedienung des großen Displays

Die Bedienung des großen Displays LUI erfolgt analog zum kleinen Display SUI. Mit Hilfe zweier unterhalb des Displays befindlicher Bedientasten können die Einstellungen vorgenommen werden:

Nach dem Start des Sensors geht dieser in den Bildschirmschoner, in welchem die Prozesswerte des Sensors nacheinander durchlaufen werden. Um von dort aus auf die Startseite zu gelangen, kann eine der beiden Tasten kurz gedrückt werden.

8 Abmessungen

ITM-51 mit vertikaler Kopfausrichtung.

Prozessanschluss

SOL

ТСх

TLx

٧хх

TriClamp Größe		Varivent Größe		
Туре	ØА	Туре	ØА	ØВ
TC1 / TL1	50,5 mm	V25	66,00 mm	53,00 mm
TC2 / TL2	64,00 mm	V40	84,00 mm	61,00 mm
T25 / TL5	77,50 mm			
TC3 / TL3	91,00 mm			

ITM-51 mit horizontaler Kopfausrichtung.

Prozessanschluss

тсх

TLx

٧хх

9 Anschlussplan Kabelverschraubung

Anschluss der Kabel an Klemmleiste: erforderlich falls der Puck aus dem Sensor ausgebaut wird.

Elektrischer Anschluss mit Kabelverschraubung

10 Elektrischer Anschluss der digitalen Signalmodule

10.1 Anschlussklemmen der I5x Serie

	152 / A52	I53 / A53			
X1	Hilfsspa	nnung +			
X2	Hilfsspa	annung -			
Х3	IO-Link / nicht be- legt	IO-Link / Digital- eingang X3			
Х4	Analogausgang X45 +				
X5	Analogausgang X45 -				
Х6	Relaisausgang 67				
Х7	Relaisausgang 67				

10.2 Anschlussklemmen der I4x Serie

Х	142			
X1	Hilfsspannung +			
Х2	Hilfsspannung -			
Х3	IO-Link			
Х4	Analogausgang X45 +			
X5	Analogausgang X45 -			

10.3M12 Stecker Farbcodes

M12 Stecker	Pin	Standard Color	Anderson Color
	1	Braun	Rot
4 3	2	Weiss	Schwarz
5-((,,))	3	Blau	Grün
1 2	4	Schwarz	Nicht belegt
	5	Grau	Weiß

10.4 Übersicht Anschlussplan

Anwendungsfälle / Funktion	Signalmodul	142	152	153
IO Link Kommunikation X3		0	0	0
1x 420 mA Trübung		0	0	0
1x Schaltausgang		•	0	0
1x Digital Eingang für externe Bereichsumstellung		•	•	0

Тур	Anschluss		Belegung			
P (1x PG) D (2x PG)	X:1 2 3 4 5 6 7	Klemmen	1: Hilfsspannung +24 V DC 2: Hilfsspannung - 3: Digitaleingang X3 4: Analogausgang X45 + 5: Analogausgang X45 - 6: Relaisausgang X67 7: Relaisausgang X67	0	0	0
12)		4-polig	1: Analogausgang X45 - 2: Analogausgang X45 + 3: Hilfsspannung +24 V DC 4: Hilfsspannung -			
А (2×М		5-polig	1: Relaisausgang X67 2: nicht belegt 3: nicht belegt 4: Relaisausgang X67 5: Digitaleingang X3	•	0	0
M (1x M12)		4-polig	1: Hilfsspannung +24 V DC 2: Analogausgang X45 + 3: Analogausgang X45 - 4: Hilfsspannung -	0	•	•
12)		4-polig	1: Analogausgang X45 + 2: Relaisausgang X67 3: Relaisausgang X67 4: Analogausgang X45 -			
N (2× M		5-polig	1: Hilfsspannung +24 V DC 2: nicht belegt 3: nicht belegt 4: Hilfsspannung - 5: Digitaleingang X3	•	0	0
с (1x M12) © IO-Link		5-polig	1: Hilfsspannung +24 V DC 2: Analogausgang X45 - 3: Hilfsspannung - 4: IO-Link 5: Analogausgang X45 +	0	•	•
M12) -Link		4-polig	1: Analogausgang X45 + 2: Relaisausgang X67 3: Relaisausgang X67 4: Analogausgang X45 -			
R (2×		3-polig	1: Hilfsspannung +24 V DC 3: Hilfsspannung - 4: IO-Link / Digitaleingang X3		Č	Ĭ

Tabelle Elektrischer Anschluss

11 ITM-51 IO-Link Geräte Identifikation

12 ITM-51 IO-Link Prozessdaten

🔻 Maintenance (User Role)						
Parameter	Device	Edit				
▼ Process Data						
 Process data 						
Turbidity 1	6.04					
Turbidity 2	0.45					
Percent Solids	0.00 %					
 Identification 						
 Device Access Locks 						
Parameter (write) Access Lock	false	▼ Write ▼				
Data Storage Lock	false	▼ Write ▼				
Vendor Name	Anderson-Negele					
Vendor Text	www.anderson-negele.com					
Product Name	ITM51					
Product ID	0					
Product Text	Turbidity Measurement					
Serial Number	00011					
Hardware Version	0.49					
Firmware Version	V01.004					
 Parameters 						
▼ General						
Display Language »	Deutsch	- Write -				
 Turbidity 1 						
Upper Range Value 1 »	A 44.7	1.0 300.1 Write 💌				
Unit Turbidity 1 »	3 % TU	▼ Write ▼				
 Turbidity 2 						
Upper Range Value 2 »	25.0	1.0 300.1 Write				
Unit Turbidity 2 »	a KEBC	▼ Write ▼				

Name	Beschrei- bung	Da- ten Typ	Bit Länge	Bit Offset	Wertbereich	Gra- dient	Off- set	Einheit
Trübung 1	Messwert von Trübung 1	Float 32	32	0	0.01 - 300.00 kNTU 0.75 - 75.00 kEBC 0.66 - 197.00 %TU 0.33-100.00 %Soli	1	0	kNTU kEBC %TU, %Solids
Trübung 2	Messwert von Trübung 2	Float 32	32	32	0.01 - 300.00 kNTU 0.75 - 75.00 kEBC 0.66 - 197.00 %TU 0.33-100.00 %Soli	1	0	kNTU kEBC %TU, %Solids
% Feststoff	% Feststoff basierend auf Trü- bungswert	Float 32	32	64	0 - 100 %	1	0	%
Turbidity Base	Messwert von Trü- bungsbasis	Float 32	32	96	0.01 - 300.00 kNTU	1	0	kNTU

12.1 ITM-51 IO-Link Beschreibung Prozessdaten

Prozesswert Trübung 1 (Bits 0-31)

Verwenden Sie auf der SPS-Eingangsseite den Datentyp Float 32 als Datentyp für jeden Prozesswert.

25

12.2 IO-Link Eventliste

Ereignisse während der Messung

Event Code	Event Type	Event Name (EN)	Event Name (DE)
36285	Warnung	Outside specification: Turbid- ity 1. Currently the sen- sor is not able to perform a reli- able measurement	Außerhalb der Spezifikation: Trü- bung 1. Derzeit ist der Sen- sor nicht in der Lage, eine zuver- lässige Messung durchzuführen
36286	Warnung	Underrange: Turbidity 1	Untersteuerungsgrenze: Trübung 1
36287	Warnung	Overrange: Turbidity 1	Übersteuerungsgrenze: Trübung 1
36288	Fehler	Underflow: Turbidity 1	Unterlauf: Trübung 1
36289	Fehler	Overflow: Turbidity 1	Überlauf: Trübung 1
36290	Warnung	No Media: Turbidity 1. Cur- rently the sensor cannot de- tect any medium	Kein Medium: Trübung 1. Der Sen- sor kann derzeit kein Medium er- kennen
36291	Fehler	Fail: Turbidity 1	Fehler: Trübung 1
36292	Warnung	Outside specification: Turbid- ity 2. Currently the sen- sor is not able to perform a reli- able measurement	Außerhalb der Spezifikation: Trü- bung 2. Derzeit ist der Sen- sor nicht in der Lage, eine zuver- lässige Messung durchzuführen
36293	Warnung	Underrange: Turbidity 2	Untersteuerungsgrenze: Trübung 2
36294	Warnung	Overrange: Turbidity 2	Übersteuerungsgrenze: Trübung 2
36295	Fehler	Underflow: Turbidity 2	Unterlauf: Trübung 2
36296	Fehler	Overflow: Turbidity 2	Überlauf: Trübung 2
36297	Warnung	No Media: Turbidity 2. Cur- rently the sensor cannot de- tect any medium	Kein Medium: Trübung 2. Der Sen- sor kann derzeit kein Medium er- kennen
36298	Fehler	Fail: Turbidity 2	Fehler: Trübung 2
36299	Warnung	Outside specification: Per- cent Solids. Currently the sen- sor is not able to perform a reli- able measurement	Außerhalb der Spezifikation: Pro- zent-Feststoffgehalt. Der- zeit ist der Sen- sor nicht in der Lage, eine zuver- lässige Messung durchzuführen

36300	Warnung	Underrange: Percent Solids	Untersteuerungsgrenze: Prozent- Feststoffgehalt		
36301	Warnung	Overrange: Percent Solids	Übersteuerungsgrenze: Prozent- Feststoffgehalt		
36302	Fehler	Underflow: Percent Solids	Unterlauf: Prozent-Feststoffgehalt		
36303	Fehler	Overflow: Percent Solids	Überlauf: Prozent-Feststoffgehalt		
36304	Warnung	No Media: Percent Solids. Cur- rently the sensor cannot de- tect any medium	Kein Medium: Prozent-Feststoffge- halt. Der Sensor kann der- zeit kein Medium erkennen		
36305	Fehler	Fail: Percent Solids	Fehler: Prozent-Feststoffgehalt		
36306	Warnung	Outside specification: Turbid- ity Base. Currently the sen- sor is not able to perform a reli- able measurement	Außerhalb der Spezifikation: Trü- bung Basis. Derzeit ist der Sen- sor nicht in der Lage, eine zuver- lässige Messung durchzuführen		
36307	Warnung	Underrange: Turbidity Base	Untersteuerungsgrenze: Trü- bung Basis		
36308	Warnung	Overrange: Turbidity Base	Übersteuerungsgrenze: Trü- bung Basis		
36309	Fehler	Underflow: Turbidity Base	Unterlauf:Trübung Basis		
36310	Fehler	Overflow: Turbidity Base	Überlauf: Trübung Basis		
36311	Warnung	No Media: Turbidity Base. Cur- rently the sensor cannot de- tect any medium	Kein Medium: Trübung Ba- sis. Der Sensor kann der- zeit kein Medium erkennen		
36312	Fehler	Fail: Turbidity Base	Fehler: Trübung Basis		
36341	Fehler	No Sensor Connected	Kein Sensor angeschlossen		
36342	Fehler	General Error. The sensor indi- cates a general error	Gerätefehler. Der Sensor mel- det einen allgemeinen Fehler		
36343	Fehler	Clipping Error	Übersteuerungsfehler		
36344	Fehler	LED defect	LED defekt		
36345	Fehler	Receiver defect	Empfänger defekt		

36346	Fehler	Reference Error	Referenzfehler
36347	Fehler	Leakage Error	Leckage Fehler
36348	Fehler	Temperature Error	Temperaturfehler
36349	Fehler	Bootloader active	Bootloader aktiv

13 Wartung und Reparatur

Der hier beschriebene Sensor zur Trübungsmessung ist wartungsfrei. Es wird empfohlen die Kalibrierung jährlich zu überprüfen. Für diese Überprüfung wird die Verwendung der ITM-51-CU Feststoffreferenz empfohlen.

ITM-51-CU-Deckel

ITM-51-CU-Bodenteil

Beispiel: ITM-51-V40 zentriert

Um die Verwendbarkeit des ITM-51/ITM-51R zu überprüfen wird die ITM-51-CU Feststoffreferenz folgendermaßen verwendet:

 Reinigen der ITM-51/ITM-51R Optik. Die Saphirscheibe muss frei von Rückständen und Kratzern sein.
 Sollte die Scheibe verkratzt sein wird der Austausch des Sensors empfohlen. Für nähere In-

formationen mit unserem Service / Support in Verbindung.

- 2. Umstellen der Messgröße auf NTU
- 3. Einstellen Messbereichsende auf 300 kNTU
- 4. Einsetzen der Referenzplatte in das Bodenteil entsprechend des verwendeten Prozessanschlusses. Der Keramikzylinder muss dabei in die Richtung zeigen in der das jeweilige Gerät

aufgesetzt wird. Geräte mit Prozessanschluss TLx und SOx werden von unten in das Bodenteil eingesteckt und zentriert. Der Keramikzylinder muss dementsprechend in die Bohrung des Bodenteiles zeigen. Prozessanschlüsse TCx und Vxx werden von oben aufgesetzt. Das jeweilige ITM-51 wird auf den Keramikzylinder aufgesetzt und durch Aufschrauben des Deckels zentriert.

- 5. Ablesen des Anzeigewertes in kNTU und Vergleich mit dem angegebenen Referenzwert. Der Referenzwert ist auf dem Aluträger des Prüftools angegeben. Der angezeigte Wert muss innerhalb der angegebenen Grenzen liegen.
- 6. Liegt der angezeigte Wert außerhalb der Grenzen, wird eine Rekalibrierung des ITM-51/ITM-51R empfohlen.

Messgröße	ssgröße Messgröße wählbar %TU, NTU,			
		%solids (kundenspezifisch)		
Messbereich	frei einstellbar	0300.000 NTU äquivalent		
		0200 %TU		
		075.000 EBC		
Prozessanschluss		CLEANadapt G1/2" hygienisch		
		Tri-Clamp 1.5", 2", 2.5", 3"		
		Varivent DN 25 (type F) DN 40/50 (type N)		
Betriebsdruck		-150 bar		
Anzugsdrehmoment		20 Nm (CLEANadapt System)		
Materialien	Anschlusskopf	Edelstahl 1.4308 (AISI CF-8)		
	Sensor	Edelstahl 1.4404 (316L)		
	Optik	Saphir		
	Kunstoffdeckel /	Polycarbonat		
	Sichtfenster			
Temperaturbereiche	Umgebung	-1060 °C		
	Prozess	-10130 °C		
	CIP/SIP	bis 140 °C max. 120 min		
Reproduzierbarkeit	Der Trübung	<1% vom Messbereichsendwert		
Auflösung/Messbe-	Die Auflösung ist auf den gewählten Messbereich bezogen	Bereich/NTU Auflösung/NTU		
reich		< 1 000 15		
		1 00010000 30		
		10000100000 100		
Genauigkeit	2009.999 NTU	±3 % vom Messwert; ±50 NTU Offset		
	10.000300.000 NTU	±5 % vom Messwert		

14 **Technische Daten**

HYGIENIC BY DESIGN ANDERSON-NEGELE

Langzeitstabilität	±0,2 %	vom Messwert
Ansprechzeit	Trübungsmessung	0,75 s
Dämpfung	1,5 s, 3 s, 5 s, 10 s, 20 s	einstellbar
Messprinzip	Infrarot Rückstreulicht	Wellenlänge 860 nm
Elektrischer Anschluss	Kabelverschraubung	2 x M16 x 1.5
	Kabelanschluss	2 x M12 Stecker 1.4301
	Hilfsspannung	1836 V DC тах. 190 mA
	Schutzart	IP 69K
Ausgänge	Analog	1x Analogausgang 420 mA, potenti- alfrei, 1x Relaisausgang potentialfrei
		1x Digitaleingang (24 V DC), kurz- schlussfest
	Digital	IO-Link v1.1
Gewicht		750 g

Hinweis

Der Inhalt dieses Dokuments ist das geistige Eigentum von Anderson-Negele. Jede Vervielfältigung oder Übersetzung dieses Dokuments ohne die schriftliche Genehmigung ist verboten.

Bitte lesen Sie diese Montage- und Betriebsanleitung genau durch. Alle Anweisungen in dieser Anleitung müssen genau befolgt werden, um den ordnungsgemäßen Betrieb des Geräts zu gewährleisten. Wenn Sie zum Produkt, dem Einbau oder der Inbetriebnahme Fragen haben, kontaktieren Sie den Anderson-Negele Support unter

Tel. +49-8333-9204720 oder per E-Mail an: support@anderson-negele.com

NEGELE MESSTECHNIK GMBH Raiffeisenweg 7 87743 Egg an der Guenz Phone +49 (0) 83 33 . 92 04 - 0 Fax +49 (0) 83 33 . 92 04 - 49 sales@anderson-negele.com Tech. Support: support@anderson-negele.com Phone +49 (0) 83 33 . 92 04 - 720

